第二百九十八章 泛函分析

第二百九十八章

9月20日。

大会召开的第十二天。

国际数学家大会召开到现在,已经进入了收尾阶段。

五千多名与会数学家当中,大概有三分之一的数学家已经启程回国。

剩下的三千多位数学家,也并非整天泡在会议大楼,而是选择在接待人员的带领下,在燕京走走逛逛,权当一次出国游。

会议大楼变得空旷下来。

这就使得顾律得以在不被认出的前提下,顺利的混入其中。

见过顾律照片的数学家不少,但顾律可以伪装了一番,完美的蒙混过关。

当然,这也是众人没想过,一直宅在家中不出门的顾律会突然一个回马枪杀回来的缘故。

二十个大会分会场,顾律有十八个没有去过。

顾律打算挨个去转转。

顾律第一个去的是泛函分析分会场。

泛函分析是一个大的数学分支。

和几何、数论、拓扑这些大的数学分支并列。

其包含非线性泛函分析、算子理论、算子代数、泛函方程等理论。

只不过,由于泛函分析这个数学分支诞生的年限较短。

其实,在上个世纪九十年代,也就是三十年前,泛函分析这个新的数学分支才被正式创建。

仅仅三十年的时间,泛函分析的发展实在是有限。

因此,在这届大会上,整个泛函分析领域只有一个分会场。

大会将近闭幕。

整个会议室内,不复往日的盛况。

会议室内大概只有百人左右,而且一个个皆是无精打采,百无聊赖的样子。

甚至还有一些数学家,直接拿出手机玩了起来,完全不管台上那人讲的内容是什么。

顾律和之前一样,在后门偷偷摸摸的溜了进去。

后面几排完全是空的。

顾律随便找了一个位置坐了下来。

接着,抬头看向报告台上。

会议进行到现在,所有分会场的四十五分钟报告皆已结束。

现在的报告已经全部是各分支数学家申请的十分钟报告。

至于像顾律那样,申请下一场四十五分钟报告的情况,再也没有出现过。

顾律扶了扶鼻梁上那副用于遮掩样貌的无度数眼睛,目光落在站在台上那位正在进行报告的青年身上。

那位青年要比顾律大些,但应该是三十岁不到的年纪。

显然,那位青年是第一次登上这么大的舞台,神情有些紧张,说话还磕磕巴巴的。

但这位青年讲述的内容,提起了顾律的兴趣。

这位青年报告的内容,属于泛函分析中的算子理论方面。

《从广义加权bloch空间到bloch-型空间的积分型算子》!

这是这位青年报告的主题。

主要阐述的内容,是研究单位球上从广义加权bloch空间到bloch-型空间的积分型算子p,g=0,φ是单位球b上的解析自映射,a>1,则p:b→bu是紧算子,当且仅当gh(∞,p)

supu|g|a|)<∞】

这就是青年所述的定理三的全部内容。

在青年看来,这只是一个普普通通的结论性定理而已,没有什么特别之处。

青年不清楚顾律为什么要问这个。

顾律当然不清楚青年内心中的疑惑。

他只是单纯的想把内心中的那个想法说出来而已,“在得出这个定理的时候,难道你没有觉得,这个定理和有界算子有很大的关联之处吗?”

“有界算子?”

“没错,就是有界算子!”顾律语气笃定。

有界算子,可以说是泛函分析领域最热门的研究方向,没有之一!

青年搞不懂他这个定理为什么回和有界算子扯上关系。

他研究的明明是紧算子啊!

幸好,顾律及时解答了青年内心中的疑惑。

“你可以通过紧算子的定义,取f=1的情况,这样的话,就很容易的可以得出p和b的有界性,这是第一步。”

顾律竖起第二根手指,笑着缓缓开口。

“至于第二步,则是对b中的任意有界序列f,得出一个在b的紧子集上一致的有fk→0,则……”

【悠閱書城一個免費看書的換源APP軟體,安卓手機需GooglePlay下載安裝,蘋果手機需登陸非中國大陸賬戶下載安裝】